skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Barnard, Edward S"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Point defects in two-dimensional materials are of key interest for quantum information science. However, the parameter space of possible defects is immense, making the identification of high-performance quantum defects very challenging. Here, we perform high-throughput (HT) first-principles computational screening to search for promising quantum defects within WS2, which present localized levels in the band gap that can lead to bright optical transitions in the visible or telecom regime. Our computed database spans more than 700 charged defects formed through substitution on the tungsten or sulfur site. We found that sulfur substitutions enable the most promising quantum defects. We computationally identify the neutral cobalt substitution to sulfur (Co$${}_{{{{{{{{\rm{S}}}}}}}}}^{0}$$ S 0 ) and fabricate it with scanning tunneling microscopy (STM). The Co$${}_{{{{{{{{\rm{S}}}}}}}}}^{0}$$ S 0 electronic structure measured by STM agrees with first principles and showcases an attractive quantum defect. Our work shows how HT computational screening and nanoscale synthesis routes can be combined to design promising quantum defects. 
    more » « less
  2. Abstract Individual atomic defects in 2D materials impact their macroscopic functionality. Correlating the interplay is challenging, however, intelligent hyperspectral scanning tunneling spectroscopy (STS) mapping provides a feasible solution to this technically difficult and time consuming problem. Here, dense spectroscopic volume is collected autonomously via Gaussian process regression, where convolutional neural networks are used in tandem for spectral identification. Acquired data enable defect segmentation, and a workflow is provided for machine-driven decision making during experimentation with capability for user customization. We provide a means towards autonomous experimentation for the benefit of both enhanced reproducibility and user-accessibility. Hyperspectral investigations on WS2sulfur vacancy sites are explored, which is combined with local density of states confirmation on the Au{111} herringbone reconstruction. Chalcogen vacancies, pristine WS2, Au face-centered cubic, and Au hexagonal close-packed regions are examined and detected by machine learning methods to demonstrate the potential of artificial intelligence for hyperspectral STS mapping. 
    more » « less
  3. null (Ed.)